diff --git a/Beijing_air_quality_prediction/README.md b/Beijing_air_quality_prediction/README.md new file mode 100644 index 0000000..1cb805a --- /dev/null +++ b/Beijing_air_quality_prediction/README.md @@ -0,0 +1,13 @@ +### 3. SARIMA时间序列预测模型 + +#### 建模思路 +1. **数据特性分析** + - 通过ADF检验验证序列平稳性(p值=0.03,通过5%显著性水平) + - 季节分解显示存在周周期性(s=7)和长期趋势 + - ACF/PACF分析确定初始参数范围 + +2. **参数选择** + 采用网格搜索确定最优参数组合: + ```python + final_order = (1, 1, 1) # 非季节性参数 + seasonal_order = (1, 1, 1, 7) # 周周期季节性 diff --git a/air_quality_prediction.ipynb b/air_quality_prediction.ipynb index 9571e6f..29a6b88 100644 --- a/air_quality_prediction.ipynb +++ b/air_quality_prediction.ipynb @@ -532,8 +532,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-03-24T07:17:24.611373Z", - "start_time": "2025-03-24T07:17:22.170632Z" + "end_time": "2025-03-24T07:23:26.872703Z", + "start_time": "2025-03-24T07:23:24.709736Z" } }, "cell_type": "code", @@ -572,6 +572,7 @@ "ax.set_xlabel('日期', fontsize=12)\n", "ax.set_ylabel('AQI数值', fontsize=12)\n", "plt.legend()\n", + "plt.savefig('./images/AQI.png', dpi=200, bbox_inches='tight')\n", "plt.show()\n", "\n", "# 计算拟合度指标\n", @@ -594,13 +595,6 @@ ], "id": "24996a0c06820cdc", "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, { "data": { "text/plain": [ @@ -622,7 +616,7 @@ ] } ], - "execution_count": 12 + "execution_count": 13 }, { "metadata": {}, diff --git a/images/AQI.png b/images/AQI.png new file mode 100644 index 0000000..62b3118 Binary files /dev/null and b/images/AQI.png differ diff --git a/readme.md b/readme.md index 9cacd4f..21daa94 100644 --- a/readme.md +++ b/readme.md @@ -62,6 +62,8 @@ ## 题目3 +### SARIMA模型解读 + ### XGBOOST模型解读 1. 该模型使用历史AQI数据,并进行周期性编码和滞后特征构建(3小时粒度的滞后特征(最多7天)),作为特征工程。 2. 每次预测均采用该时间点以前的真实数据,即每次预测均为单步预测。