statistics_model2025/snowNLP_danmu sentiment_analyzer.py

74 lines
2.2 KiB
Python
Raw Normal View History

2025-03-29 14:02:40 +08:00
import pandas as pd
2025-03-29 15:41:31 +08:00
import numpy as np
2025-03-29 14:02:40 +08:00
from snownlp import SnowNLP
2025-03-29 15:41:31 +08:00
import os
2025-03-29 14:02:40 +08:00
def load_data(file_path):
try:
df = pd.read_csv(file_path, usecols=['弹幕内容'], engine='python')
return df['弹幕内容'].dropna().astype(str).tolist()
except Exception as e:
print(f"数据加载失败: {str(e)}")
return []
2025-03-29 15:41:31 +08:00
def analyze_sentiment(danmu_texts):
sentiment_scores = []
2025-03-29 14:02:40 +08:00
2025-03-29 15:41:31 +08:00
for item in danmu_texts:
s=SnowNLP(item)
sentiment_scores.append(s.sentiments)
2025-03-29 14:02:40 +08:00
2025-03-29 15:41:31 +08:00
avg_score = np.mean(sentiment_scores)
return avg_score
def process_all_partitions(base_path):
# 获取所有分区目录
partitions = [d for d in os.listdir(base_path)
if os.path.isdir(os.path.join(base_path, d))]
2025-03-29 15:41:31 +08:00
for partition in partitions:
partition_path = os.path.join(base_path, partition)
print(f"正在处理分区: {partition}")
process_partition(partition_path)
2025-03-29 15:41:31 +08:00
# process_partition函数
2025-03-29 15:41:31 +08:00
def process_partition(partition_path):
info_file = os.path.join(partition_path, 'info.csv')
if not os.path.exists(info_file):
print(f"未找到info文件: {info_file}")
return
info_df = pd.read_csv(info_file, encoding='utf-8')
# 创建与info_df行数相同的空列表初始值为None
scores = [None] * len(info_df)
2025-03-29 15:41:31 +08:00
for idx, bv in enumerate(info_df['BV号']):
# 构建弹幕文件目录路径
danmu_dir = os.path.join(partition_path, bv)
if not os.path.exists(danmu_dir):
continue # 保持None值
2025-03-29 15:41:31 +08:00
# 查找匹配的弹幕文件
danmu_files = [f for f in os.listdir(danmu_dir)
if f.startswith(bv) and f.endswith('danmaku.csv')]
if not danmu_files:
continue # 保持None值
danmu_file = os.path.join(danmu_dir, danmu_files[0])
2025-03-29 15:41:31 +08:00
danmu_texts = load_data(danmu_file)
2025-03-29 15:41:31 +08:00
if not danmu_texts:
continue # 保持None值
2025-03-29 15:41:31 +08:00
# 将结果放入对应的索引位置
scores[idx] = analyze_sentiment(danmu_texts)
2025-03-29 15:41:31 +08:00
info_df['弹幕情感评分snowNLP'] = scores
info_df.to_csv(info_file, index=False, encoding='utf-8-sig')
2025-03-29 15:41:31 +08:00
# 使用示例 - 处理所有分区
process_all_partitions("hot_data")
process_all_partitions("nohot_data")