This commit is contained in:
Sheyiyuan 2025-03-30 12:06:31 +08:00
parent 11104e6d5a
commit 2107d9e189
2 changed files with 30 additions and 20 deletions

View File

@ -3,24 +3,28 @@ from transformers import AutoModelForSequenceClassification, AutoTokenizer #
import pandas as pd
import torch
import os
# 在文件开头添加导入
from tqdm import tqdm
def load_data(file_path):
"""优化后的数据加载函数"""
try:
df = pd.read_csv(file_path, usecols=['弹幕内容'], engine='python')
df = pd.read_csv(file_path, usecols=['弹幕内容'], engine='python', encoding='utf-8')
return df['弹幕内容'].dropna().astype(str).tolist()
except Exception as e:
print(f"数据加载失败: {str(e)}")
return []
# 在analyze_sentiment函数中添加模型路径处理
def analyze_sentiment(texts):
"""改进的情感分析函数"""
try:
# 使用 HuggingFace 的模型
# 修改为优先使用打包后的模型路径
model_path = os.path.join(os.path.dirname(__file__), '.cache/huggingface/hub')
model_name = "IDEA-CCNL/Erlangshen-Roberta-330M-Sentiment"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_name, cache_dir=model_path)
# 批量处理提升效率
inputs = tokenizer(texts, padding=True, truncation=True, max_length=128, return_tensors="pt")
@ -53,27 +57,33 @@ def process_partition(partition_path):
return
info_df = pd.read_csv(info_file, encoding='utf-8')
# 创建与info_df行数相同的空列表初始值为None
scores = [None] * len(info_df)
for idx, bv in enumerate(info_df['BV号']):
# 构建弹幕文件目录路径
danmu_dir = os.path.join(partition_path, bv)
if not os.path.exists(danmu_dir):
continue # 保持None值
# 添加进度条
with tqdm(total=len(info_df), desc=f"处理分区 {os.path.basename(partition_path)}") as pbar:
for idx, bv in enumerate(info_df['BV号']):
danmu_dir = os.path.join(partition_path, bv)
if not os.path.exists(danmu_dir):
pbar.update(1)
continue
# 查找匹配的弹幕文件
danmu_files = [f for f in os.listdir(danmu_dir)
if f.startswith(bv) and f.endswith('danmaku.csv')]
danmu_files = [f for f in os.listdir(danmu_dir)
if f.startswith(bv) and f.endswith('danmaku.csv')]
if not danmu_files:
continue # 保持None值
if not danmu_files:
pbar.update(1)
continue
danmu_file = os.path.join(danmu_dir, danmu_files[0])
danmu_texts = load_data(danmu_file)
danmu_file = os.path.join(danmu_dir, danmu_files[0])
danmu_texts = load_data(danmu_file)
if not danmu_texts:
continue # 保持None值
if not danmu_texts:
pbar.update(1)
continue
scores[idx] = analyze_sentiment(danmu_texts)
pbar.update(1)
pbar.set_postfix({'当前BV号': bv, '评分': scores[idx]})
# 将结果放入对应的索引位置
scores[idx] = analyze_sentiment(danmu_texts)

0
build.spec Normal file
View File