122 lines
4.1 KiB
Python
122 lines
4.1 KiB
Python
import pandas as pd
|
||
import numpy as np
|
||
from snownlp import SnowNLP
|
||
import os
|
||
|
||
def load_data(file_path):
|
||
try:
|
||
df = pd.read_csv(file_path, usecols=['弹幕内容'], engine='python')
|
||
return df['弹幕内容'].dropna().astype(str).tolist()
|
||
except Exception as e:
|
||
print(f"数据加载失败: {str(e)}")
|
||
return []
|
||
|
||
def analyze_sentiment(danmu_texts):
|
||
# 添加特殊词汇处理(以原词典中很好为0.78,一般为0.52,差为0.14为标准手动添加)
|
||
special_cases = {
|
||
# 高强度正能量词
|
||
"爷青回": 0.9, # 情怀向
|
||
"yyds": 0.9, # 永远滴神
|
||
"YYDS": 0.9, # 永远滴神
|
||
"kksk":0.8, # 很喜欢
|
||
"awsl": 0.8, # 啊我死了(感动)
|
||
'阿伟死了': 0.8, # 谐上(感动)
|
||
"类目": 0.8, # 感动场景(谐泪目)
|
||
"排面": 0.8, # 排场十足
|
||
"文艺复兴": 0.8, # 经典重现
|
||
'绝绝子': 0.7, # 绝
|
||
"双厨狂喜": 0.7, # 跨界联动
|
||
"梦幻联动": 0.7, # 跨作品合作
|
||
"注入灵魂": 0.7, # 高能片段
|
||
# 玩梗互动词
|
||
"下次一定": 0.55, # 投币拖延梗
|
||
"你币没了": 0.45, # 威胁不投币
|
||
"典": 0.3, # 经典复读(含贬义)
|
||
# 高能名场面
|
||
"名场面": 0.85, # 经典片段
|
||
"神仙打架": 0.9, # 高手对决
|
||
"前方高能": 0.7, # 高潮预警
|
||
# 数字
|
||
"10":0.85,#十分制打分
|
||
"100分":0.85,#百分制打分
|
||
"5":0.85,#五分制打分
|
||
"666": 0.75, # 玩得厉害
|
||
"999": 0.75, # 6翻了
|
||
"2333": 0.6, # 笑
|
||
# 抽象文化
|
||
"草": 0.55, # 笑(中性)
|
||
"生草": 0.6, # 搞笑场景
|
||
# 破防场景
|
||
"破防了": 0.4, # 心理防线崩溃
|
||
"我裂开了": 0.3, # 心态炸裂
|
||
# 特定领域梗
|
||
"奥利给": 0.8, # 加油打气
|
||
"DNA动了": 0.8, # 触发记忆
|
||
"有内味了": 0.7, # 特色到位
|
||
# 负向场景
|
||
"阴间": 0.3, # 诡异内容
|
||
"血压上来了": 0.3 # 令人烦躁
|
||
}
|
||
sentiment_scores = []
|
||
|
||
for item in danmu_texts:
|
||
if item in special_cases:
|
||
sentiment_scores.append(special_cases[item])
|
||
else:
|
||
s = SnowNLP(item)
|
||
sentiment_scores.append(s.sentiments)
|
||
|
||
avg_score = np.mean(sentiment_scores)
|
||
return avg_score
|
||
|
||
|
||
def process_all_partitions(base_path):
|
||
# 获取所有分区目录
|
||
partitions = [d for d in os.listdir(base_path)
|
||
if os.path.isdir(os.path.join(base_path, d))]
|
||
|
||
for partition in partitions:
|
||
partition_path = os.path.join(base_path, partition)
|
||
print(f"正在处理分区: {partition}")
|
||
process_partition(partition_path)
|
||
|
||
# process_partition函数
|
||
def process_partition(partition_path):
|
||
info_file = os.path.join(partition_path, 'info.csv')
|
||
if not os.path.exists(info_file):
|
||
print(f"未找到info文件: {info_file}")
|
||
return
|
||
|
||
info_df = pd.read_csv(info_file, encoding='utf-8')
|
||
# 创建与info_df行数相同的空列表,初始值为None
|
||
scores = [None] * len(info_df)
|
||
|
||
for idx, bv in enumerate(info_df['BV号']):
|
||
# 构建弹幕文件目录路径
|
||
danmu_dir = os.path.join(partition_path, bv)
|
||
if not os.path.exists(danmu_dir):
|
||
continue # 保持None值
|
||
|
||
# 查找匹配的弹幕文件
|
||
danmu_file = [f for f in os.listdir(danmu_dir)
|
||
if f.startswith(bv) and f.endswith('danmaku.csv')]
|
||
|
||
if not danmu_file:
|
||
continue # 保持None值
|
||
|
||
danmu_path=os.path.join(danmu_dir, danmu_file[0])
|
||
danmu_texts = load_data(danmu_path)
|
||
|
||
if not danmu_texts:
|
||
continue # 保持None值
|
||
|
||
# 将结果放入对应的索引位置
|
||
scores[idx] = analyze_sentiment(danmu_texts)
|
||
|
||
info_df['弹幕情感评分snowNLP'] = scores
|
||
info_df.to_csv(info_file, index=False, encoding='utf-8-sig')
|
||
|
||
|
||
# 使用示例 - 处理所有分区
|
||
process_all_partitions("hot_data")
|
||
process_all_partitions("nohot_data") |