161 lines
6.0 KiB
Python
161 lines
6.0 KiB
Python
import os
|
||
import pandas as pd
|
||
from tqdm import tqdm
|
||
import requests
|
||
from PIL import Image
|
||
import numpy as np
|
||
|
||
# 新增分区映射函数
|
||
def load_partition_mapping(mapping_file='FSR.xlsx'):
|
||
"""加载分区映射关系"""
|
||
mapping_df = pd.read_excel(mapping_file)
|
||
return dict(zip(mapping_df['分区名称'], mapping_df['大分区']))
|
||
|
||
def merge_data():
|
||
# 加载分区映射关系
|
||
partition_mapping = load_partition_mapping()
|
||
|
||
# 合并热门和非热门数据
|
||
hot_data = merge_partition_data("hot_data", is_hot=1, partition_mapping=partition_mapping)
|
||
nohot_data = merge_partition_data("nohot_data", is_hot=0, partition_mapping=partition_mapping)
|
||
|
||
# 合并所有数据
|
||
all_data = pd.concat([hot_data, nohot_data], ignore_index=True)
|
||
|
||
# 按发布时间排序
|
||
all_data['发布时间的timestamp'] = pd.to_numeric(all_data['发布时间的timestamp'])
|
||
all_data = all_data.sort_values('发布时间的timestamp')
|
||
|
||
# 保存非文本数据
|
||
all_data.to_csv('data_all_second_ver.csv', index=False, encoding='utf-8-sig')
|
||
|
||
# 处理并保存文本数据
|
||
save_text_data(all_data, 'data_text_all')
|
||
|
||
delete_comments_info()
|
||
|
||
def delete_comments_info():
|
||
# 读取文件./data_all.csv
|
||
data_all = pd.read_csv('data_all_second_ver.csv', encoding='utf-8-sig')
|
||
|
||
# 删除评论内容列
|
||
data_all = data_all.drop(columns=['评论内容'], errors='ignore')
|
||
|
||
# 保存文件
|
||
data_all.to_csv('data_all_second_ver.csv', index=False, encoding='utf-8-sig')
|
||
|
||
def merge_partition_data(base_path, is_hot, partition_mapping):
|
||
all_data = []
|
||
|
||
# 遍历所有分区
|
||
partitions = [d for d in os.listdir(base_path)
|
||
if os.path.isdir(os.path.join(base_path, d))]
|
||
|
||
for partition in tqdm(partitions, desc=f"处理{'热门' if is_hot else '非热门'}数据"):
|
||
partition_path = os.path.join(base_path, partition)
|
||
|
||
# 读取info文件
|
||
info_file = os.path.join(partition_path, 'info.csv')
|
||
if not os.path.exists(info_file):
|
||
continue
|
||
|
||
info_df = pd.read_csv(info_file, encoding='utf-8')
|
||
|
||
# 添加大分区映射
|
||
info_df['大分区'] = info_df['分区'].map(partition_mapping)
|
||
|
||
# 读取up_info文件并合并
|
||
up_info_file = os.path.join(partition_path, 'up_info.csv')
|
||
if os.path.exists(up_info_file):
|
||
up_df = pd.read_csv(up_info_file, encoding='utf-8')
|
||
# 删除不需要的列
|
||
up_df = up_df.drop(columns=['uid', '昵称'], errors='ignore')
|
||
# 为up主字段添加前缀
|
||
up_df = up_df.rename(columns=lambda x: f'up主{x}' if x != 'BV号' else x)
|
||
info_df = pd.merge(info_df, up_df, on='BV号', how='left')
|
||
|
||
# 删除视频荣誉序列
|
||
info_df = info_df.drop(columns=['视频荣誉'], errors='ignore')
|
||
|
||
# 添加是否热门标记
|
||
info_df['是否热门'] = is_hot
|
||
|
||
# 加载评论数据但不加入data_all.csv
|
||
# (仅用于生成单独的评论文件)
|
||
comments_list = []
|
||
for bv in info_df['BV号']:
|
||
bv_dir = os.path.join(partition_path, bv)
|
||
if os.path.exists(bv_dir):
|
||
# 使用glob匹配带数字后缀的评论文件
|
||
comment_files = [f for f in os.listdir(bv_dir)
|
||
if f.startswith(f"{bv}_") and f.endswith("_comments.csv")]
|
||
|
||
if comment_files:
|
||
try:
|
||
# 读取第一个匹配的评论文件
|
||
comment_file = os.path.join(bv_dir, comment_files[0])
|
||
comments = pd.read_csv(comment_file, encoding='utf-8')
|
||
comments_text = "\n".join(comments['评论内容'].dropna().astype(str))
|
||
comments_list.append(comments_text)
|
||
except Exception as e:
|
||
print(f"读取评论文件 {comment_file} 失败: {str(e)}")
|
||
comments_list.append("")
|
||
else:
|
||
comments_list.append("")
|
||
else:
|
||
comments_list.append("")
|
||
|
||
info_df['评论内容'] = comments_list
|
||
|
||
all_data.append(info_df)
|
||
|
||
return pd.concat(all_data, ignore_index=True)
|
||
|
||
def save_text_data(df, output_dir):
|
||
# 创建输出目录
|
||
os.makedirs(output_dir, exist_ok=True)
|
||
|
||
# 需要保存的文本字段
|
||
text_fields = {
|
||
'title': '标题',
|
||
'标签': 'tags',
|
||
'简介': 'description',
|
||
'弹幕内容': 'danmaku',
|
||
'评论内容': 'comments'
|
||
}
|
||
|
||
# 保存每个文本字段
|
||
for field, filename in text_fields.items():
|
||
if field in df.columns:
|
||
# 特殊处理标签字段(从JSON列表转换为纯文本)
|
||
if field == '标签':
|
||
tags_texts = []
|
||
for tags_json in df[field].dropna():
|
||
try:
|
||
# 处理JSON格式的标签列表
|
||
tags = eval(tags_json) if isinstance(tags_json, str) else tags_json
|
||
tags_texts.extend([tag.strip("'\" ") for tag in tags])
|
||
except:
|
||
continue
|
||
with open(f'{output_dir}/{filename}.txt', 'w', encoding='utf-8') as f:
|
||
f.write('\n'.join(tags_texts))
|
||
|
||
# 特殊处理热门评论(仅保存热门视频的评论)
|
||
elif field == '评论内容' and '是否热门' in df.columns:
|
||
hot_comments = df[df['是否热门'] == 1][field].dropna().astype(str).tolist()
|
||
with open(f'{output_dir}/{filename}_hot.txt', 'w', encoding='utf-8') as f:
|
||
f.write('\n'.join(hot_comments))
|
||
|
||
# 普通文本字段处理
|
||
else:
|
||
texts = df[field].dropna().astype(str).tolist()
|
||
with open(f'{output_dir}/{filename}.txt', 'w', encoding='utf-8') as f:
|
||
f.write('\n'.join(texts))
|
||
|
||
# 从dataframe中删除评论内容列
|
||
df = df.drop(columns=['评论内容'], errors='ignore')
|
||
return df
|
||
|
||
if __name__ == '__main__':
|
||
merge_data()
|