152 lines
5.3 KiB
Python
152 lines
5.3 KiB
Python
import pandas as pd
|
||
import torch
|
||
<<<<<<< HEAD
|
||
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||
from pathlib import Path
|
||
|
||
|
||
class SentimentAnalyzer:
|
||
def __init__(self, model_path: str = "uer/roberta-base-finetuned-dianping-chinese"):
|
||
"""
|
||
初始化情感分析模型
|
||
:param model_path: 本地模型路径或HuggingFace模型名称
|
||
"""
|
||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
|
||
try:
|
||
# 优先尝试加载本地模型
|
||
local_path = Path(model_path)
|
||
if local_path.exists():
|
||
self.tokenizer = AutoTokenizer.from_pretrained(local_path)
|
||
self.model = AutoModelForSequenceClassification.from_pretrained(local_path)
|
||
else:
|
||
# 从HuggingFace加载(使用国内镜像)
|
||
self.tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||
mirror="https://hf-mirror.com")
|
||
self.model = AutoModelForSequenceClassification.from_pretrained(model_path,
|
||
mirror="https://hf-mirror.com")
|
||
|
||
self.model = self.model.to(self.device)
|
||
self.model.eval()
|
||
print(f"成功加载模型: {model_path}")
|
||
|
||
except Exception as e:
|
||
raise RuntimeError(f"模型加载失败: {str(e)}")
|
||
|
||
def analyze(self, texts: list, batch_size: int = 32) -> list:
|
||
"""
|
||
批量情感分析
|
||
:param texts: 待分析文本列表
|
||
:param batch_size: 批处理大小
|
||
:return: 情感概率列表(0-1之间)
|
||
"""
|
||
if not texts:
|
||
return []
|
||
|
||
# 自动调整批大小防止内存溢出
|
||
mem = torch.cuda.mem_get_info()[0] if torch.cuda.is_available() else 2e9
|
||
safe_batch_size = min(batch_size, max(1, int(mem // 1e7)))
|
||
|
||
all_probs = []
|
||
for i in range(0, len(texts), safe_batch_size):
|
||
batch = texts[i:i + safe_batch_size]
|
||
|
||
try:
|
||
inputs = self.tokenizer(
|
||
batch,
|
||
padding=True,
|
||
truncation=True,
|
||
max_length=128,
|
||
return_tensors="pt"
|
||
).to(self.device)
|
||
|
||
with torch.no_grad():
|
||
outputs = self.model(**inputs)
|
||
|
||
probs = torch.softmax(outputs.logits, dim=1)[:, 1]
|
||
all_probs.extend(probs.cpu().numpy().tolist())
|
||
|
||
except RuntimeError as e:
|
||
if "CUDA out of memory" in str(e):
|
||
safe_batch_size = max(1, safe_batch_size // 2)
|
||
print(f"检测到显存不足,调整批大小为: {safe_batch_size}")
|
||
continue
|
||
raise
|
||
|
||
return all_probs
|
||
=======
|
||
from transformers import AutoModelForSequenceClassification, AutoTokenizer # 修改为从transformers导入
|
||
|
||
|
||
def load_data(file_path):
|
||
"""优化后的数据加载函数"""
|
||
try:
|
||
df = pd.read_csv(file_path, usecols=['弹幕内容'], engine='python')
|
||
return df['弹幕内容'].dropna().astype(str).tolist()
|
||
except Exception as e:
|
||
print(f"数据加载失败: {str(e)}")
|
||
return []
|
||
|
||
|
||
def analyze_sentiment(texts):
|
||
"""改进的情感分析函数"""
|
||
# 使用新的模型配置
|
||
model_name = "IDEA-CCNL/Erlangshen-Roberta-330M-Sentiment"
|
||
try:
|
||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
||
|
||
# 批量处理提升效率
|
||
inputs = tokenizer(texts, padding=True, truncation=True, max_length=128, return_tensors="pt")
|
||
with torch.no_grad():
|
||
outputs = model(**inputs)
|
||
|
||
# 调整概率计算方式
|
||
probs = torch.softmax(outputs.logits, dim=1)
|
||
return probs[:, 1].mean().item() # 假设正例在位置1
|
||
|
||
except Exception as e:
|
||
print(f"模型加载失败: {str(e)}")
|
||
return 0.5 # 返回中性评分作为默认值
|
||
>>>>>>> 0618b31b4ac22dbf912798c562bc80043e8e91b8
|
||
|
||
|
||
# ----------------- 使用示例 -----------------
|
||
if __name__ == "__main__":
|
||
# 初始化分析器(自动选择本地/在线模型)
|
||
analyzer = SentimentAnalyzer("./local_models/sentiment") # 优先尝试本地模型
|
||
|
||
# 测试数据
|
||
test_texts = [
|
||
"这个视频真的太棒了!",
|
||
"完全看不懂在讲什么",
|
||
"浪费时间,不建议观看",
|
||
"画面精美,内容有深度"
|
||
]
|
||
|
||
# 获取情感概率
|
||
scores = analyzer.analyze(test_texts)
|
||
|
||
# 输出结果
|
||
for text, score in zip(test_texts, scores):
|
||
print(f"「{text}」=> 积极概率: {score:.4f}")
|
||
|
||
|
||
# 从CSV文件读取弹幕
|
||
def load_danmu(file_path: str) -> list:
|
||
try:
|
||
df = pd.read_csv(file_path)
|
||
return df['弹幕内容'].dropna().astype(str).tolist()
|
||
except Exception as e:
|
||
print(f"文件读取失败: {str(e)}")
|
||
return []
|
||
|
||
|
||
# 实际使用
|
||
# 文件路径
|
||
file_path = "hot_data/GMV/BV1ajXMYUE6S/BV1ajXMYUE6S_273_danmaku.csv"
|
||
danmu_list = load_danmu(file_path)
|
||
if danmu_list:
|
||
danmu_scores = analyzer.analyze(danmu_list)
|
||
avg_score = sum(danmu_scores) / len(danmu_scores)
|
||
print(f"\n弹幕平均情感评分:{avg_score:.4f}") |